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A higher order approximate static condensation
method for multi-material diffusion problems

Alexander Zhiliakov∗ Daniil Svyatskiy† Maxim Olshanskii‡

Evgeny Kikinzon § Mikhail Shashkov¶

November 28, 2018

Abstract

The paper studies an approximate static condensation method for the diffusion
problem with discontinuous diffusion coefficients. The method allows for a general
polygonal mesh which is unfitted to the material interfaces. Moreover, the interfaces
can be discontinuous across the mesh edges as typical for numerical reconstructions
using the volume or moment-of-fluid methods. We apply a mimetic finite difference
method to solve local diffusion problems and use P1 (mortar) edge elements to couple
local problems into the global system. The condensation process and the properties
of the resulting algebraic system are discussed. It is demonstrated that the method
is second order accurate on smooth solutions and performs well for problems with
high contrast in diffusion coefficients. Experiments also show the robustness with
respect to position of the interface against the underlying mesh.

1 Introduction

Multi-phase and multi-material processes are ubiquitous in nature and engineering. Math-
ematical models of such processes are often formulated in terms of systems of partial differ-
ential equations with discontinuous coefficients and interface conditions on time-dependent
internal boundaries. Due to their high complexity, these models resist analytical treat-
ment, and hence numerical simulations became an indispensable tool for solving the models
and gaining insights into underlying phenomena.

Past decades evidenced an explosive growth in developing of efficient computational tech-
niques for problems with evolving interfaces, which involve interaction between many
materials or different phases of matter. This includes immersed boundary method [11],
level-set method [12], and unfitted finite element methods [3, 4], to name several popular
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numerical approaches. The present study is motivated by the successful applications of
the volume-of-fluid (VOF) [7] and the moment-of-fluid (MOF) methods [1] for the nu-
merical reconstruction of time-dependent interfaces. Both methods do not require a mesh
aligned with the interfaces and reconstruct them from the information about the volumes
of materials in each cell. The superior conservation properties of the VOF and MOF
approaches, however, commonly come at a price of recovering piecewise smooth inter-
face approximation that is discontinuous across the faces of the underlying computational
mesh.

In this report, we devise a higher order method for the numerical solution of the diffu-
sion problem with discontinuous coefficients on a general polyhedral mesh, which does not
respect the position of multi-material interfaces. The method builds upon the approxi-
mate static condensation (ASC) algorithm first proposed in [8]; it admits high-contrast
diffusion coefficients and discontinuous reconstruction of the interfaces as typical for the
volume/moment-of-fluid method. The ASC approach uses the formulation of the interface
diffusion problem as a system of local inter-cell problems coupled through the concentra-
tion values and fluxes on the cell faces. This face concentration serves as the new primal
unknown and it is further approximated by piecewise polynomial functions defined on all
faces of the global (unfitted polygonal) mesh. The original paper [8] considered P0 (piece-
wise constant) approximation to the face concentration, while the present study introduces
higher order polynomials for this purpose. Although the latter potentially leads to more
accurate results (and in some cases we shall see that it provides convergent results, when
the P0 version fails), it also raises some questions about stability and robustness, which
we address in the present report.

The approximate static condensation approach leaves much freedom in the choice of the
discretization method for the local diffusion problems. Posed in each polygonal cell, these
problems are given by diffusion equations with discontinuous coefficients. The method
benefits from the observation that for any fixed cell T , material interfaces, which possibly
intersect with T , induce a consistent polygonal subdivision (local mesh) of T . Opposite to
the global mesh, the local one is fitted to interfaces, i.e. each micro polyhedral element is
shared only by one material. Following [8], we apply the mimetic finite difference (MFD)
method from [9] to approximate the local diffusion problems on this fine fitted mesh. After
eliminating inter-cell degrees of freedom (d.o.f.), one obtains a system of linear algebraic
equations for the face concentration degrees of freedom. The fluxes and inter-element
degrees of freedom are recovered by simple postprocessing. In the report, we study the
performance of the method in terms of accuracy, robustness with respect to the interfaces
position, and algebraic stability.

The remainder of the paper is organized as follows. In section 2 we formulate the model
diffusion problem with discontinuous diffusion tensor, introduce the basic mesh and discuss
a reformulation of the model as a system of coupled local problems. Section 3 presents
the method and discusses certain properties of the resulting system of algebraic equations.
Finally, section 4 collects results of numerical experiments. These results include accuracy
tests, numerical comparison with the method from [8] and with a homogenization method
as an alternative approach.
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2 Model problem and macro-mesh decomposition

In a polygonal bounded domain Ω ⊂ R2 we consider the following diffusion problem in
the mixed form K−1 u + ∇ p = 0 in Ω,

∇ · u + c p = f in Ω
(1)

with boundary data

p = gD on ∂ΩD, u · n̂ = gN on ∂ΩN . (2)

Here p is a concentration and u is the diffusive flux, K is the positive definite symmetric
diffusivity tensor, which we assume constant within each material subdomain, c ≥ 0 is
the reaction coefficient, n̂ is the outward normal vector to ∂Ω, gD and gN are Dirichlet
and Neumann boundary data, respectively. In the context of fluid flows in porous media,
(1)–(2) is also known as the Darcy problem. In this case, p has the meaning of pressure,
u is fluid velocity, and K is the permeability tensor.

(a) Macro-mesh (b) MMCs (c) MOF reconstruction

Figure 1: The figure illustrates global unstructured polyhedral mesh (left); Physical inter-
faces for three materials and cut cells, i.e. multi-material cells (central); The piecewise-
planar discontinuous reconstruction of the interfaces by the moment-of-fluid method
(right). Everything is shown for two refinement level of the macro-mesh

We assume the triangulation T of Ω consisting of general polyhedral elements as illustrated
in Figure 1 (left). This triangulation constitutes our macro-mesh. The material interfaces,
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i.e. surfaces where K may experience discontinuities, may cut through the macro-mesh in
an arbitrary way; see Figure 1 (center). The polygonal cells T ∈ T cut by the interfaces
are further called multi-material cells (MMCs). In practice, we are given a reconstructed
interface by a volume-of-fluid or moment-of-fluid method. This reconstructed interface
may be discontinuous across faces of MMCs, but locally within each T ∈ T it is a collection
of planar surfaces; see Figure 1 (right).

Denote by F the collection of all faces of the macro-mesh T. We shall distinct between
the subset of internal and external faces, F = Fint∪Fext

1. Introducing the new unknown
λ ∈ H 1

2 (F), we reformulate (1)–(2) as a system of local problems coupled through the
boundary data and flux continuity condition:

K−1 u + ∇ p = 0 in T,

∇ · u + c p = f in T,

p = λ on ∂T,

∀ T ∈ T, (3)

Ju · n̂K = 0 on F, ∀ F ∈ Fint. (4)

Here n̂ denotes a normal vector to the face F ∈ Fint and Ju · n̂K is the jump of the normal
flux across F . On the outer boundary ∂Ω we assume (2).

Note that λ defines Dirichlet boundary data for local diffusion problems. Once λ is known,
one can solve (3) for u and p inside each element independently, and hence recover the
solution of the original problem (1). The idea behind the ASC method is to introduce a
piecewise polynomial space to approximate λ, and define discretizations of subproblems
from (3). This local subproblems are further explicitly resolved to eliminate internal
degrees of freedom and to form a system of algebraic equations for λ.

Before we go into details of the method, we note that λ can also be observed as the
Lagrange multiplier corresponding to the normal flux condition (4). The problem (3)–(4)
can be formulated in the weak form: Find u ∈

⊗
T∈T

Hdiv (T ) s.t. u · n̂ = gN on ∂ΩN ,

p ∈ L2 (Ω), λ ∈ H 1
2 (Fint) such that∫

Ω

K−1 u · v dx−
∑
T∈T

∫
T

p∇ · v dx +
∑

F∈Fint

∫
F

λ Jv · n̂K dl = −
∫
∂ΩD

gD v · n̂ dl,

∑
T∈T

∫
T

∇ · u q dx +

∫
Ω

c p q dx =

∫
Ω

f q dx,

∑
F∈Fint

∫
F

Ju · n̂Kµ dl = 0

(5)

for all v ∈
⊗
T∈T

Hdiv (T ) s.t. v · n̂ = 0 on ∂ΩN , q ∈ L2 (Ω), and µ ∈ H 1
2 (Fint).

1For the sake of notation, we shall use F to denote both the set of elements and the corresponding
domain formed by their union ∪F∈F F̄ ; same for Fint, Fext and other collections of mesh elements
introduced later in the text. The meaning should be clear from a context.
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3 Approximate static condensation method

In this section we describe approximate static condensation method of order n, ASC(n),
for solving the multi-material heterogeneous diffusion problem (1).

Consider an arbitrary but fixed cell T ∈ T. We now introduce the discretization of the
local diffusion problem (3) in T . To this end, we consider the local mesh τ (T ) of T , which
is referred as mini-mesh. While the original triangulation T is referred as macro-mesh.

Figure 2: Local polyhedral mesh for
a three-material cell T ∈ T

If T contains only one phase or material, then we
obviously have τ (T ) = {T}. Otherwise for the cell
shared by several phases, τ (T ) consists of polygonal
elements, forming a tessellation of T , such that any
τ ∈ τ (T ) contains only one phase/material; see Fig-
ure 2. We denote by f(T ) the set of all faces in τ (T ),
which collects both internal and boundary (external)
faces with respect to T , f(T ) = fint(T ) ∪ fext(T ).
Thus for the example of local mesh drafted in Fig-
ure 2, we have three elements in τ (T ), two inter-
nal faces from fint(T ) and eleven external faces from
fext(T ). It is clear that this local mesh is fitted to
the material interfaces.

We shall discretize (3) in T in terms of average fluxes
assigned to each face from f(T ), we denote the cor-
responding vector by uτ ∈ Rnf , nf = #f(T ), and concentration values assigned to each
cell τ ∈ τ (T ), we denote the corresponding vector by pτ ∈ Rnp , np = #τ (T ). The given
data is the source term vector fτ ∈ Rnp and the concentration values λ on the boundary
of T . To approximate this boundary data for the local problem, we introduce the vector
λτ ∈ Rnλ , nλ = #fext(T ), where we assign one averaged concentration value for each
f ∈ fext(T ), so that λτ can be seen as a piecewise-constant approximation of λ with
respect to the subdivision of ∂T into the faces of the local mesh τ .

Given the above definition of the degrees of freedom on the local mesh we apply the
mimetic finite difference (MFD) method from [9]. The method leads to the following
system of equations with the matrix having the block structure:(

Mτ BT
τ

−Bτ Στ

)(
uτ

pτ

)
=

(
Eτ Cτ λτ

fτ

)
. (6)

Here Mτ , Στ , BT
τ , −Bτ are vector-mass, mass, gradient and divergence matrices, re-

spectively. −Cτ is a diagonal scaling matrix. i.e. the mass matrix for λτ unknowns;
Eτ ∈ Rnf×nλ is a rectangular matrix with 0 and 1 entries which sparsifies a vector from
Rnλ to a vector from Rnf . For the details on MFD and accurate definition of the matrices
we refer to [9, 5]. Here we need the property that Bτ has a full row rank, and Mτ = MT

τ

is positive definite.

Since the continuity of flux condition (4) and boundary conditions are enforced on all the
external edges of T , we need to distinct the vector uext

τ of fluxes on fext(T ), which is just
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a trivial restriction of uτ on the edges from fext(T ),

uext
τ := ET

τ uτ , (7)

where ET
τ is the restriction matrix with entries equal 0 or 1.

We now eliminate uτ from (6) and express pτ in terms of λτ (static condensation); re-
covering fluxes (backward substitution) and using (7) we get

uext
τ = Aτ Cτ λτ − aτ , (8)

with

Aτ = ET
τ

(
M−1

τ −M−1
τ BT

τ

(
Στ + Bτ M−1

τ BT
τ

)−1
Bτ M−1

τ

)
Eτ , (9)

aτ = ET
τ M−1

τ BT
τ

(
Στ + Bτ M−1

τ BT
τ

)−1
fτ . (10)

Note that matrices Aτ and vectors aτ are computed locally for each T ∈ T.

Next, we should use the continuity of flux condition (4) and boundary conditions to obtain
a complete system for uext

τ and λτ . However, we cannot do this in a straightforward
way, since the discontinuity of material interfaces across the macro-mesh faces may lead
to a mismatch of discrete fluxes from two sides of F ∈ Fint, including different space
dimensions. Therefore, we shall enforce the flux continuity condition in the spirit of the
mortar finite element method [2] using the space of function defined on Fint, which are
polynomials of degree at most n on every F ∈ Fint, an analog of the Lagrange multiplier
space in the mortar method:

Λ =
{
λ ∈ L2 (Fint) : λ ∈ Pn for any F ∈ Fint

}
.

When the Lagrange multiplier space Λ couples local MFD solutions, it is convenient to
define degrees of freedom for λ ∈ Λ in terms of its (n+ 1) moments λ

(i)
F on every internal

face F ∈ Fint:

λ
(i)
F =

∫
F
λ si dl

|F |
, i = 0, . . . , n. (11)

Here { si }i=0,...,n is the set of L2 (F )-orthogonal polynomials of degree n.

For F ∈ Fint shared by two polygonal cells T± ∈ T denote by fF (T±) ⊂ fext(T
±)

the subsets of mini-faces that belong to the macro-face F from each side. Let νF :=
max {# fF (T+), # fF (T−)}. We set FT ⊂ F to be the subset of macro-faces forming the
boundary of a cell T . With each face F ∈ FT we associate min {n + 1, νF} degrees of
freedom (11) in the Λ space. The local and global number of d.o.f. are

nT :=
∑
F∈FT

min {n+ 1, νF} and nT :=
∑
F∈F

min {n+ 1, νF},

respectively.

Further denote by λT ∈ RnT a vector of d.o.f. for elements of Λ associated with all macro-
faces spanning the boundary of T . We need a correspondence between elements of Λ and
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local face elements λτ used as boundary data in local problem (6). This corresponding is
given by the interpolation matrix Rτ ,

λτ = Rτ λT , (12)

where λτ is effectively a piecewise constant approximation of λT on fext(T ). Using this
in (8), we get

uext
τ = Aτ Cτ Rτ λT − aτ . (13)

If we find the mortar vector λT , we recover the local approximation to the face concentra-
tion, i.e. λτ , from (12). Further we solve numerically local subproblems in (3) applying
the mimetic FD method. This completes the solution algorithm for (1).

The dimension of the Λ space is nT, i.e. (n + 1) or less unknowns for each face F ∈ F.
To obtain the system of nT equations, we enforce the weak continuity of the moments of
fluxes on each internal macro-face∫

F

u|T+ · n̂ si dl =

∫
F

u|T− · n̂ si dl, i = 0, . . . , n, for each F ∈ Fint, (14)

with
(
u|T+ · n̂

)
(x) = uext

τ (f) |f |, if x ∈ f for f ∈ fF (T+), and uext
τ (f) is the local flux

assigned to f (component of uext
τ ). Similar definition applies to u|T− . This and (13) result

in the linear algebraic system
ST λT = bT, (15)

with ST ∈ RnT×nT ,λT,bT ∈ RnT . Neumann boundary condition in (2) is handled in the
similar way, and Dirichlet boundary data in (2) is enforced strongly in (15).

Matrix ST is sparse and its sparsity pattern does not depend on mini-meshes. Some useful
properties of this matrix will be discussed in the next section.

3.1 Matrix properties

In this section we discuss the assembly procedure of the global matrix from (15) and show
that ST is symmetric positive definite. We concentrate on ASC(1), which we implement
and validate in the next section. We shall make necessary remarks about ASC(0) as it is
largely obtained by obvious simplifications of ASC(1).

The method uses local piecewise constant and global piecewise P1

(
for ASC(1)

)
approxi-

mation of the concentration on F. Local piecewise constant approximations λτ , however,
use finer local subdivisions, so λτ does not belong to the restriction of the global space
Λ on the boundary of a given cell T . For the method, we define a mapping given by the
matrix Rτ to map global to local degrees of freedom and RT

τ from local to global. For the
well-posedness of the method, we need Rτ to have a full rank.

We define Rτ locally for any fixed T ∈ T. Let us enumerate all faces of the given T
by index j. For example, j = 1, . . . , 4 for the polygonal cell in Figure 3. For each j,
index i enumerates mini-faces from fext(T ) belonging to the macro-face j. For example,
i ∈ {1, 2, 3} for j = 1 and i ∈ {1} for j = 4 for the same example in Figure 3. Further,
denote by λj i(τ ) the local d.o.f. assigned to the i-th mini-face belonging to the j-th
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λ
(0

)
4

(T
)

F

λ
(0

)
2

(T
)
λ

(1
)

2
(T

)

λ
(0)
1 (T ) λ

(1)
1 (T )

λ
(0)
3 (T ) λ

(1)
3 (T )

λ11(τ ) λ12(τ ) λ13(τ )

λ31(τ )λ32(τ )

λ41(τ )

λ21(τ )

λ22(τ )

λ23(τ )

(a) νF = 1

λ
(0

)
4

(T
)
λ

(1
)

4
(T

)

F

λ
(0

)
2

(T
)
λ

(1
)

2
(T

)

λ
(0)
1 (T ) λ

(1)
1 (T )

λ
(0)
3 (T ) λ

(1)
3 (T )

λ11(τ ) λ12(τ ) λ13(τ )

λ31(τ )λ32(τ )

λ41(τ )

λ21(τ )

λ22(τ )

λ23(τ )

(b) νF = 3

Figure 3: λji(τ ) are local d.o.f. used in MFD for λ from (3), λ
(0)
j (T ), λ

(1)
j (T ) are global

d.o.f. used to describe mortar space Λ. Left: Face F is single-material and uses one global
d.o.f.; Right: Face F is multi-material and uses two global d.o.f.

macro-face, and by λ
(0)
j (T ), λ

(1)
j (T ) two moments defining an element from Λ on the j-th

macro-face (see Figure 3) so that we have

λ
(
r(t)
)

= λ
(1)
j (T ) |F | t+

(
λ

(0)
j (T )−

λ
(1)
j (T ) |F |

2

)
, F ∈ Fint (16)

for λ ∈ Λ. Here t ∈ (0, 1) and r : (0, 1)→ F is the affine parametrization of F , which has
index j among macro-faces of T .

Integrating (16) over all mini-faces f ∈ fF (T ) (f has local index i among mini-faces
belonging to F ) and re-scaling, we get

λj i(τ ) =

{
λ

(0)
j (T ) + sj i λ

(1)
j (T ), if F is a multi-material face,

λ
(0)
j (T ), otherwise,

(17)

where sj i is a signed distance between centroids of f and F . For the corresponding vectors

of unknowns λτ = {λj i(τ )} and λT = {λ(0)
j (T )} ∪ {λ(1)

j (T )} this defines the matrix Rτ

through (12). For the example in Figure 3 (left), Rτ is given by

Rτ =



1 s1 1 0 0 0 0 0
1 s1 2 0 0 0 0 0
1 s1 3 0 0 0 0 0
0 0 1 s2 1 0 0 0
0 0 1 s2 2 0 0 0
0 0 1 s2 3 0 0 0
0 0 0 0 1 s3 1 0
0 0 0 0 1 s3 2 0
0 0 0 0 0 0 1


.

For ASC(0) the matrix Rτ is as above with rows containing sij-s eliminated.
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Now, when the mappings between local and global approximations of λ are defined, we
are ready to proceed with the assembly of the global matrix ST. The flux continuity over
the face F

(
condition (14)

)
yields

∑
f∈fF (T+)

uext
τ+(f) |f |+

∑
f∈fF (T−)

uext
τ−(f) |f | = 0,

∑
f∈fF (T+)

uext
τ+(f)

∫
f

s1 dl +
∑

f∈fF (T−)

uext
τ−(f)

∫
f

s1 dl = 0

or in the matrix form (
RT

τ+ Cτ+ uext
τ+

)
i
+
(
RT

τ− Cτ− uext
τ−

)
j

= 0, (18)

where i and j are the local indexes of the face F in the cells T+ and T−, respectively. For
the Neumann part of the boundary of T± we set fN(T±) := {f ∈ fext(T

±) : f ⊂ ∂ΩN}.
If F from T+ belongs to the Neumann part of the boundary, then we have(

RT
τ+ Cτ+ uext

τ+

)
i

=
(
RT

τ+ Cτ+ gN τ+

)
i
, gN τ+ :=

{∫
f

gN sk dl / |f |
}
f ∈ fN (T+), k∈{0, 1}

.

Substituting (13) into (18) we get the local equation for λT( (
RT

τ+ Cτ+ Aτ+ Cτ+ Rτ+

)︸ ︷︷ ︸
ST+ :=

λT+

)
i
+
( (

RT
τ− Cτ− Aτ− Cτ− Rτ−

)︸ ︷︷ ︸
ST− :=

λT−

)
j

=

(
RT

τ+ Cτ+ aτ+︸ ︷︷ ︸
bT+ :=

)
i
+
(
RT

τ− Cτ− aτ−︸ ︷︷ ︸
bT− :=

)
j
.

(19)

As standard in finite element methods, one assembles the global system (15) from the
local matrices and local right-hand side vectors. Thus we may formally write

ST =
∑
T∈T

NT
T ST NT , bT =

∑
T∈T

NT
T bT . (20)

where NT defines global to local mapping for the cell T .

From (19) it is clear that ST is sparse: Global d.o.f. λ
(0)
m (T), λ

(1)
m (T) (components of λT)

interact only with d.o.f. associated with faces of macro-cells that share mth macro-face.
For example, if F ∈ Fint is shared by two quadrilaterals and has global index m, then mth
row of ST has at most 14 nonzero elements for ASC(1) and at most 7 for ASC(0).

Now we show that the global matrix ST in (15) is symmetric and positive definite. We
give the arguments for ASC(1). Same arguments hold for ASC(0) after obvious simplifi-
cations.

Lemma 3.1. ker Rτ = {0} for ASC(1)

Proof. From (17) we have that for any cell T and its mini-mesh τ (T ) the interpolating
matrix may be written as

Rτ =


S1

S2

. . .

Sm

 , (21)
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where m := number of macro-faces spanning T and

Sk :=



1 sk 1

...
...

1 skmk

 , if kth face is multi-material face,

1, otherwise,

1 < mk is the number of mini-faces of the kth macro-face, sk i is the signed distance
between centroids of ith mini-face and kth macro-face. If T contains only one material,
then Rτ = I and hence ker Rτ = {0}, so we assume that there is at least one multi-
material face.

Clearly, matrix Rτ has a non-trivial kernel iff

sk i = sk j, i, j = 1, 2, . . . ,mk

for some k. Take some S ≡ Sk corresponding to a multi-material face F ∈ FT with l := mk

materials,

S =

1 s1
...

...
1 sl

 .

It is sufficient to show that s1 6= s2. Let f1 and f2 be corresponding mini-faces. We have

s1 =
1

2
(|f1| − |F |) , s2 = |f1|+

1

2
(|f2| − |F |) ,

and
s1 = s2 ⇔ |f1|+ |f2| = 0.

Hence s1 6= s2, and ker Rτ = {0} follows.

Theorem 3.2. Matrix ST is symmetric. If c > 0 or |∂ΩD| > 0, then ST is positive
definite.

Proof. First, noting that for any two symmetric positive definite matrices A1 and A2

inequality A1 ≥ A2 implies A−1
1 ≤ A−1

2 , we conclude

B̃
T
(
Σ + B̃ B̃

T
)−1

B̃ ≤ B̃
T
(
B̃ B̃

T
)−1

B̃ ≤ I, (22)

where Σ is any symmetric and non-negative definite matrix, B̃ is any matrix such that

ker B̃
T

= {0}, and I is identity matrix. To check the last inequality in (22), one can

consider, e.g., the SVD decomposition of B̃.

From the identities (9) and (22) with B̃
T

:= M
− 1

2
τ BT

τ , Σ := Στ it immediately follows
that Aτ is symmetric and non-negative definite. The symmetry of ST follows from the
definition in (19)–(20). By similar considerations, it is easy to see that Aτ is positive
definite for all T , where c > 0. Hence if c > 0 in Ω , then (19)–(20) and the full ranks of
Rτ ’s and Cτ ’s imply the positive definiteness of ST.
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Now we show the positive definiteness of ST if |∂ΩD| > 0. Consider any given T ∈ T.
Matrix Aτ defines the discrete Dirichlet-to-Neumann map for ∂T . If ∂T ∩ ∂ΩD, then
ker Aτ = {0}. Otherwise dim

(
ker Aτ

)
= 1 and Aτ Cτ λτ = 0 implies that λτ is constant

on ∂T . Consider some λ from the mortar space Λ and corresponding vector of moments
λT. Using connectivity of the mesh one easily finds that Rτ λT can be constant on every
T ∈ T only if λ is constant. Due to the assumption |∂ΩD| > 0 this implies λ = 0. Hence
for any 0 6= λT ∈ RnT we have

(ST λT, λT)
(20)
=
((∑

T∈T

NT
T ST NT

)
λT, λT

)
=
∑
T∈T

(
ST NT λT, NT λT︸ ︷︷ ︸

λT=

)
=
∑
T∈T

(
ST λT , λT

)
> 0.

The last inequality holds, since there exists T such that λT = NT λT is not in the kernel
for λT 6= 0.

4 Numerical results

Let h be a max cell diameter for the macro-mesh Th, and Vh ⊂ L2 (Ω) be a space of
piecewise constant functions on each cell τ ∈ τ (T ), T ∈ Th. We define discrete L2-norm
of v ∈ L2 (Ω) as

‖v‖`2(Ω) := ‖Ph v‖L2(Ω), (23)

where Ph : L2 (Ω)→ Vh is L2-projection operator.

For the error eh := p− ph between the exact and computed solutions we have

e`
2

h := ‖eh‖`2(Ω) = ‖p− ph‖`2(Ω) = ‖Ph p− Ph ph‖L2(Ω) = ‖Ph p− ph‖L2(Ω) (24)

since Ph is linear and ph ∈ Vh. The discrete norm (24) of the discretization error is
computed as follows:

e`
2

h =

∑
T∈Th

∑
τ∈τ (T )

(
1

|τ |

∫
τ

p dx− ph(τ)

)2

|τ |

 1
2

,

where |τ | is the area of cell τ .

If Th consists of triangles and no material interfaces are present, ASC(n) boils down to
mixed-hybrid Raviart – Thomas finite element method (which is algebraically equivalent
to RT0 finite element method). In this particular case we have [?]

‖u− uh‖L2(Ω) ≤ c h ‖u‖H1(Ω), ‖p− ph‖L2(Ω) ≤ c
(
h ‖p‖H1(Ω) + h2 ‖p‖H2(Ω)

)
,

so one cannot expect ASC(n) L2-convergence to be better than linear. Note that

‖p− ph‖`2(Ω) ≤ ‖p− ph‖L2(Ω) (25)

since ‖p − ph‖`2(Ω) = ‖Ph (p − ph)‖`2(Ω) ≤ ‖Ph‖L(L2(Ω),Vh)‖p − ph‖L2(Ω), and the operator
norm ‖Ph‖L(L2(Ω),Vh) = 1 by Pythagorean theorem. Thus one may expect some improve-
ment in `2-convergence as one increases n for ASC(n).
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4.1 Linear solution

(a) K1 ≡ K2 ≡ I (b) K1 ≡ K2 ≡ K3 ≡ I

Figure 4: Material distribution for pseudo-multi-material problem: two materials (left),
three materials (right)

The first set of tests is designed to check the property of the method to accurately recover
the solution that is the polynomial of degree 1. Let us consider the diffusion problem (1)
with c ≡ f ≡ 0, ∂ΩD = ∂Ω. The computational domain Ω = (0, 1)2 is divided into several
subdomains by non-intersecting straight lines. In these settings the interface reconstruc-
tion algorithm MOF reconstructs the interfaces exactly. To test the linearity preservation
property, we set up a pseudo-multi-material problem with the diffusion tensor being the
same in all subdomains, Ki = I. The exact solution is a linear function. The geometry of
two cases under consideration is shown in Figure 4.

We denote the solution computed with the ASC(n) method by ph, n, n = 0, 1. For ASC(0)
we have e`

2

h, 0 = 6.38 × 10−2 and 6.41 × 10−2 for the configurations shown in Figures 4a
and 4b, respectively. That is, ASC(0) is not able to recover P1 solutions exactly.

Since ASC(1) approximates interface traces with P1 functions it recovers edge-based de-
grees of freedom exactly in the sense of mean values. This results in exact reconstruction
of cell-based unknowns and linearity preservation property for both examples, i.e.

e`
2

h, 1 = ‖p− ph, 1‖`2(Ω) = 0.

4.2 Piecewise P1 solution

In this set of tests, we consider the diffusion problem (1) with c ≡ f ≡ 0, ∂ΩD = ∂Ω, and
two different materials in the domain. K = k I, k = 1 in the left part of the domain and
k = 0.1 in the right (see Figure 5b). The exact solution is piecewise linear such that the
normal flux is continuous across the interface (see Figure 5a).

12



(a) Reference solution p (b) Materials: k1 = 1, k2 = 0.1

Figure 5: Piecewise linear reference solution

For this example we use a sequence of square base meshes Thi , i = 1, 2, 3, 4. We denote
by

ρhi, n :=
ln e`

2

hi, n
/e`

2

hi+1, n

lnhi/hi+1

the reduction rate order of ASC(n) in `2-norm between ith and (i+ 1)th refinement steps.
We also compute the `∞-norm of the error

e∞hi, n := ‖p− phi, n‖∞

for ASC(n).

Table 1: Piecewise linear example: convergence

A
S

C
(0

)

h e`
2

0 ρ e∞0

3.5× 10−1 7.3× 10−1 4.8

8.8× 10−2 1.6× 10−1 1.1 1.2

2.2× 10−2 3.7× 10−2 1.1 3.4× 10−1

5.5× 10−3 8.9× 10−3 1.0 7.9× 10−2

A
S

C
(1

)

h e`
2

1 ρ e∞1

3.5× 10−1 2.5× 10−2 1.6× 10−1

8.8× 10−2 1.9× 10−3 1.84 6.3× 10−2

2.2× 10−2 1.6× 10−4 1.79 9.8× 10−3

5.5× 10−3 1.3× 10−5 1.80 4.0× 10−3

Numerical results are shown in Table 1. We observe that ASC(0) converges linearly with
respect to the `2-norm, and ASC(1) has the convergence rate close to quadratic with
respect to the `2-norm.
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4.3 Piecewise P2 solutions

4.3.1 Two materials

(a) Reference solution p

(b) p(x, 1
2)

Figure 6: Piecewise quadratic reference solution, 2 materials

Let us consider the diffusion problem (1) with c ≡ 0, ∂ΩD = ∂Ω. The computational
domain is divided into subdomains: Ω1 = {x : ‖x − x0‖ < 0.2} with x0 = (0.5, 0.5) and
Ω2 = (0, 1)2 \ Ω̄1. The diffusion tensor is set to be Ki = ki I in Ωi, k1 = 0.001 and k2 = 1.
The exact solution is piecewise quadratic such that the normal flux is continuous across
the interface (see Figure 6). For this problem we compare convergence properties of the
ASC(0) and ASC(1) methods on a sequence of Voronoi meshes.

Table 2: Piecewise quadratic example, two materials: convergence

A
S

C
(0

)

h e`
2

0 ρ e∞0
3.0× 10−1 2.4× 10−3 6.3× 10−1

1.5× 10−1 6.5× 10−4 2.0 7.0× 10−3

8.1× 10−2 2.6× 10−4 1.4 3.2× 10−3

4.2× 10−2 1.4× 10−4 0.9 2.3× 10−3

2.1× 10−2 3.7× 10−5 1.9 1.1× 10−3

1.0× 10−2 2.7× 10−5 0.4 8.6× 10−4

A
S

C
(1

)

h e`
2

1 ρ e∞1
3.0× 10−1 2.4× 10−3 2.1× 10−3

1.5× 10−1 7.0× 10−4 1.9 1.3× 10−2

8.1× 10−2 2.3× 10−4 1.8 6.8× 10−4

4.2× 10−2 6.8× 10−5 1.8 3.2× 10−4

2.1× 10−2 2.0× 10−5 1.8 1.1× 10−4

1.0× 10−2 5.4× 10−6 1.9 3.3× 10−5

The norms of the errors are shown in Table 2. ASC(1) demonstrates convergence with
the rate in the `2-norm close to quadratic. ASC(0) convergence rate fluctuates signifi-
cantly.

We also observe a bump in the max norm error for ASC(1) on the second mesh level, h =
1.5× 10−1. To have some insight, we show the corresponding mesh in the Figure 7a. One
may note that the interface reconstruction produces significant discontinuity of interfaces:
A small volume of the external material, i.e. the one occupying Ω2 domain, appears inside
the disk (domain Ω1). Due to constant trace approximation, ASC(0) is not sensitive to
such irregularity. It turns out that for ASC(1) the `∞ norm of the error is affected by
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the appearance of such small isolated cut cells. At the same time, this does not affect the
`2-convergence of ASC(1).

(a) Materials (b) ASC(0), ph (c) ASC(1), ph

Figure 7: Piecewise quadratic example, two materials: h = 1.5 × 10−1. This figure illus-
trates the appearance of small isolated material volumes during numerical reconstruction
of material interfaces. This may affect the `∞ error norm of the ASC(1)

4.3.2 Three materials

(a) Reference solution p

(b) p(x, 1
2)

Figure 8: Piecewise quadratic reference solution, three materials

In the next group of numerical tests, we consider the same diffusion problem (1) with c ≡ 0,
∂ΩD = ∂Ω. The computational domain is now divided into three subdomains: Ω1 = {x :
‖x − x0‖ < 0.15}, Ω2 = {x : 0.15 < ‖x − x0‖ < 0.2}, and Ω3 = (0, 1)2 \ (Ω̄1 ∪ Ω̄2).
The diffusion tensor is set to be Ki = ki I, k1 = k3 = 1, k2 = 0.001. The geometry
represents a ring with k2 = 0.001 inside the ring and k1 = k3 = 1 outside the ring. The
exact solution is piecewise quadratic such that the normal flux is continuous across the
interface; see Figure 8. We use a sequence of triangular meshes to study convergence
for this example. In this set of tests, we also consider the numerical method based on
homogenization techniques for the comparison. The homogenization method we use is
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from [6]. The homogenized values of the diffusion tensor are computed on the base cells
T and then plugged into the MFD discretization applied on the base mesh Th; see [8] for
implementation details of this method.

Table 3: Piecewise quadratic example, three materials: error norms and convergence rates
A

S
C

(0
)

h e`
2

0 ρ e∞0
3.0× 10−1 4.5 17

2.5× 10−1 4.5 17

1.3× 10−1 4.0 17

8.3× 10−2 4.4 17

6.7× 10−2 7.1× 10−1 4.9

4.3× 10−2 4.5× 10−1 1.2 5.0

A
S

C
(1

)

h e`
2

0 ρ e∞0
3.0× 10−1 4.5× 10−1 3.5

2.5× 10−1 2.6× 10−1 3 2.7

1.3× 10−1 9.2× 10−2 1.5 6.2× 10−1

8.3× 10−2 4.8× 10−2 1.6 8.3× 10−1

6.7× 10−2 2.8× 10−2 2.5 2.3× 10−1

4.3× 10−2 1.0× 10−2 2.3 6.3× 10−2

H
om

o
g
en

iz
at

io
n

A
ri

th
m

et
ic

h e`
2

AH ρ e∞AH

3.0× 10−1 4.9 17

2.5× 10−1 5.0 17

1.3× 10−1 4.9 17

8.3× 10−2 4.7 17

6.7× 10−2 4.4 16

4.3× 10−2 9.7× 10−1 3.5 5.7

H
ar

m
o
n

ic

h e`
2

HH ρ e∞HH

3.0× 10−1 2.3 15

2.5× 10−1 1.7 1.6 16

1.3× 10−1 7.3× 10−1 1.2 12

8.3× 10−2 4.8× 10−1 1.0 12

6.7× 10−2 3.4× 10−1 1.6 9.4

4.3× 10−2 1.6× 10−1 1.7 8.2

Numerical results are shown in Table 3. We compare ASC(0), ASC(1), arithmetic, and
harmonic homogenization. Note that up to mesh level h = 8.3 × 10−2 macro-faces with
three materials are present, and starting from h = 6.7× 10−2 the meshes are fine enough
so that only macro-faces sharing one or two materials occur.

We see that ASC(0) starts to converge linearly with respect to `2-norm once h < 6.7×10−2.
ASC(1) demonstrates a robust behavior and shows the convergence rate close to quadratic
with respect to `2-norm as in previous examples, and performs better than homogenization
approaches.

4.4 Algebraic robustness

In this section, we study the dependence of the condition number of matrix ST on the
position of the material interface against the background mesh. For this purpose, we solve
the diffusion problem (1) in the unit square with ∂Ω = ∂ΩD, K = k I, k = 1 on the left
part and k = 0.1 on the right. We keep the mesh fixed, and change the position of the
interface so that the minimal length w of mini-faces gets smaller, w = 10−1, 10−2, . . . , 10−5

(see Figure 9).

Numerical results are shown in Table 4. We observe that the condition number κASC(0)

of ST for ASC(0) levels off if w gets smaller. The condition number κASC(1) of ASC(1)
depends on w and behaves as O(w−1) for w → 0. A closer look at the spectrum of ST

reveals that the growth of the condition number for ASC(1) is due to presence of only few
(three for this example) small eigenvalues, which tend to zero. To illustrate this, Table 4
shows the “effective” condition number of ST that is defined as

κ̃ASC(1) = µmax/µ3
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Figure 9: Distribution of materials leads to different values of the minimal length w of
mini-faces

(a) w = .1 (b) w = .01 (c) w = .001

Table 4: Condition numbers of ASC(0) / ASC(1) system matrices (15)

w κASC(0) κASC(1) κ̃ASC(1)

10−1 41.0 1 730 41.0

10−2 45.2 2 817 45.1

10−3 48.3 16 391 48.3

10−4 49.0 152 325 49.0

10−5 49.1 1.5× 106 49.1

where µmin = µ0 ≤ µ1 ≤ · · · ≤ µmax are the eigenvalues of ST of ASC(1). From this results
we see that the effective condition number of ASC(1) stays bounded with respect to the
interface position and is close to the condition number of ASC(0). We hypothesize that the
number of outliers in the spectrum of ST is proportional to the number of multi-material
cells with small cuts.

It is well-known that the presence of a few outliers in the spectrum does not affect the
asymptotic convergence of the conjugate gradient (CG) iterative methods, see, e.g., [10].
Indeed, in our experiments the CG method (with algebraic multigrid preconditioner) was
found to be equally effective for solving systems of algebraic equations resulting from
ASC(0) and ASC(1).

4.5 Unsteady problem

We finally apply the ASC methods to simulate the time-dependent diffusion problem. In
the mixed form, the problem readsK−1 u + ∇ p = 0 in Ω,

∇ · u + ∂
∂t
p = f in Ω

(26)
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for t ∈ (0, T ] with initial data p(x, 0) = p0(x) and boundary data as in (2). After dis-
cretizing in time by the implicit Euler method, the problem takes the form (1)–(2) with
c = |∆t|−1 and we apply the spacial discretization described in section 3. For the purpose
of comparison, we apply arithmetic and harmonic homogenization methods followed by a
MFD discretization.

The computational domain is the same as in section 4.3.2 with the example of three
different materials. Ω1 = {x : ‖x − x0‖ < 0.15}, Ω2 = {x : 0.15 < ‖x − x0‖ < 0.2}, and
Ω3 = (0, 1)2 \ (Ω̄1 ∪ Ω̄2). The diffusion tensor is set as Ki = ki I, k1 = 10, k2 = 0.002, and
k3 = 1.

We prescribe Dirichlet boundary data gD = 1 on the left side of the unit square, while
right, top, and bottom sides are prescribed no-flux boundary condition, gN ≡ 0. The
external source term is zero, f ≡ 0. The initial concentration is set to be

p0(x, y) = (1− x)10.

The equilibrium state for t→∞ is obviously p ≡ 1. In our computations, we set the final
time T = 5.

(a) Conforming (super)mesh of Ω
(b) Cuts p∗

(
(x, 0.5), t

)
of the reference solution

Figure 10: Triangulation of Ω used to obtain the reference solution and cuts of the reference
solution for t ∈ {0.13, 0.25, . . . , 5}

We first compute solution p∗ to the problem (26) using P2 finite element method on
sufficiently fine mesh consisting of 4 908 triangles. This mesh is illustrated in Figure 10
(left). The reference mesh is consistent with material interfaces so it consists only of
single-material cells. Time step ∆t is chosen as T/40. This solution was found to be (al-
most) mesh independent and will serve as the reference solution. The center cutline pro-
files p∗

(
(x, 0.5), t

)
are shown in the Figure 10 (right) for several values of t ∈ (0, T ].

For ASC(0), ASC(1), arithmetic and harmonic homogenization methods we use two Voronoi
meshes with h = 1.5×10−1 (124 base cells) and h = 8.1×10−2 (465 base cells). The coarse
mesh contains 20 multi-material cells and two macro-faces sharing three materials. The
fine mesh contains 50 multi-material cells and no three material macro-faces. For all these
methods we use 20 time frames, ∆t = T/20. Results are shown in Figures 11 – 13.
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(a) Reference (b) Arithmetic homo. (c) Harmonic homo.

(d) ASC(0) (e) ASC(1) (f) ASC(0, 1) difference

Figure 11: Comparison of the discrete solutions ph for h = 1.5× 10−1, t = 1.25

(a) Coarse mesh, t = 0.25 (b) Coarse mesh, t = 1.50

(c) Fine mesh, t = 0.25 (d) Fine mesh, t = 1.50

Figure 12: Comparison of the cuts ph
(
(x, 0.5), t

)
of discrete solutions for coarse and fine

meshes, h = 1.5× 10−1 and h = 8.1× 10−2
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(a) Coarse mesh

(b) Fine mesh

Figure 13: `2-norm of the error computed for the inclusion Ω1 ∪ Ω2 for coarse and fine
meshes, h = 1.5× 10−1 and h = 8.1× 10−2

From the figures it is easy to appreciate that among all the methods only ASC(1) provides
a reasonable approximation for the coarse mesh, cf. Figures 11. Numerical solution
computed with ASC(0) overestimates incoming fluxes for the ring. This solution converges
to the equilibrium state ph ≈ 1 at approximately t = 3.75, which is significantly earlier
than the time when the same state is achieved by the reference solution. Note that the
coarse mesh contains faces with three materials, and we saw already that ASC(0) may fail
to converge for this case even for stationary examples.

We tried replacing Voronoi mesh with a triangulation such that the number of triangles
is close to the number of the polygonal cells in the fine Voronoi mesh (456 elements for
the triangular mesh v.s. 465 for the Voronoi mesh); the achieved difference is that the
triangular mesh has faces with three materials, and Voronoi mesh does not. Nevertheless,
ASC(0) performed poorly for this example converging to the steady-state at approximately
t = 3.

Arithmetic homogenization performs poorly for both mesh levels (even finer mesh near the
inclusions is required to provide reasonably accurate solution). Harmonic homogenization
shows reasonable results only for the fine mesh.

In Figure 13 we present the `2-norm of the error p∗−ph computed for the inclusion Ω1∪Ω2
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as a function of time. Since all numerical solutions eventually converge to the same steady
state, numerical errors for any method decrease for large enough time. On earlier stages
ASC(1) outperforms all methods on the coarse mesh and provides comparable results with
ASC(0) scheme and the harmonic homogenization approach on the fine mesh.
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